Abstract

BackgroundDiscs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase (MAGUK) adaptor family of proteins and its deregulation has been implicated in the malignancy of several cancer types. Dlg5 was down-regulated in hepatocellular carcinoma (HCC) and lower Dlg5 expression was associated with poor survival of HCC patients. However, how to regulate Dlg5 remains largely unknown.MethodsThe co-immunoprecipitation assay was used to determine the interaction between Dlg5 and β-TrCP. The in vivo ubiquitination assay was performed to determine the regulation of Dlg5 by β-TrCP. CCK-8 and colony formation assay were implemented to detect the biological effect of Dlg5 on the growth of HCC cells in vitro. The effect of Dlg5 on HCC tumor growth in vivo was studied in a tumor xenograft model in mice.ResultsHere we report that Dlg5 is regulated by the ubiquitin proteasome system and depletion of either Cullin 1 or β-TrCP led to increased levels of Dlg5. β-TrCP regulated Dlg5 protein stability by targeting it for ubiquitination and subsequent destruction in a phosphorylation-dependent manner. We further demonstrated a crucial role of Ser730 in the non-canonical phosphodegron of Dlg5 in governing β-TrCP-mediated Dlg5 degradation. Importantly, failure to degrade Dlg5 significantly inhibited HCC cells proliferation both in vitro and in vivo.ConclusionCollectively, our finding provides a novel molecular mechanism for the negative regulation of Dlg5 by β-TRCP in HCC cells. It further suggests that preventing Dlg5 degradation could be a possible novel strategy for clinical treatment of HCC.

Highlights

  • Discs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase (MAGUK) adaptor family of proteins and its deregulation has been implicated in the malignancy of several cancer types

  • Dlg5 is regulated by the ubiquitin proteasome system via an Skp1/Cullin1/F-box protein (SCF) ubiquitin ligase complex We found that the protein level of Dlg5 was regulated by the ubiquitin proteasome system, as proteasome inhibitor MG132 treatment resulted in the accumulation of endogenous Dlg5 in two hepatocellular carcinoma (HCC) cell lines and exogenous expressed Flag-Dlg5 in 293T cells (Fig. 1a–c)

  • SMMC-7721 cells were treated with MLN4924, and we found that MLN4924 treatment significantly induced the expression of Dlg5 and p27, the latter is a well-known Cullin-based ubiquitin E3 ligases (CRLs) substrate (Fig. 1d)

Read more

Summary

Introduction

Discs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase (MAGUK) adaptor family of proteins and its deregulation has been implicated in the malignancy of several cancer types. Liver cancer is the sixth most common cancer in the world and the second malignant tumor of global cancer mortality. It is composed of hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma and mixed liver cancer, and about 90% is hepatocellular carcinoma [1]. The ubiquitin proteasome pathway (UPP) is critical for protein degradation in eukaryotic organisms. It can selectively degrade many biologically active proteins in cells and participate in the regulation of almost all biological processes, including cell cycle, apoptosis and inflammatory response [4].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call