Abstract

The complexation of the uranyl ion with humic acid is investigated. The humic acid ligand concentration is described as the concentration of reactive humic acid molecules based on the number of humic acid molecules, taking protonation of functional groups into account. Excess amounts of U(VI) are used and the concentration of the humic acid complex is determined by the solubility enhancement over the solid phase. pH is varied between 7.5 to 7.9 in 0.1M NaClO4 under normal atmosphere and room temperature. The solubility of U(VI) in absence of humic acid is determined over amorphous solid phase between pH 4.45 and 8.62. With humic acid, only a limited range of data can be used for the determination of the complexation constant because of flocculation or sorption of the humic acid upon progressive complexation. Analysis of the complex formation dependency with pH shows that the dominant uranyl species in the concerned pH range are UO2(OH)+ and (UO2)3(OH)5 +. The complexation constant is evaluated for the humate interaction with the to UO2(OH)+ ion. The stability constant is found to be logβ = 6.94±0.3 l/mol. The humate complexation constant of the uranyl mono-hydroxo species thus is significantly higher than that of the nonhydrolyzed uranyl ion (6.2 l/mol). Published data on the Cm3+, CmOH2+ and Cm(OH)2 + humate complexation are reevaluated by the present approach. The higher stability of the hydrolysis complex is also found for Cm(III) humate complexation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.