Abstract

Transcription factor A (TFAM) is involved in the transcription regulation, maintenance and compaction of the mitochondrial genome. Recent structural data on TFAM showed its mode of operation and clarified previous biochemical and genetic results. In solution, TFAM is highly dynamic. According to crystal structures of its complex with the cognate light-strand promoter (LSP) binding sequence, it intertwines and dramatically bends DNA, thereby allowing interactions with the transcription initiation machinery. Recent studies have shown TFAM sliding on non-specific DNA, which induces compaction by increasing DNA flexibility. Finally, the structural localization of disease-related TFAM mutations suggests functional impairment at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.