Abstract

U-splines are a novel approach to the construction of a spline basis for representing smooth objects in Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE). A spline is a piecewise-defined function that satisfies continuity constraints between adjacent cells in a mesh. U-splines differ from existing spline constructions, such as Non-Uniform Rational B-splines (NURBS), subdivision surfaces, T-splines, and hierarchical B-splines, in that they can accommodate local variation in cell size, polynomial degree, and smoothness simultaneously over more varied mesh configurations. Mixed cell types (e.g., triangle and quadrilateral cells in the same mesh) and T-junctions are also supported, although the continuity of interfaces with triangle and tetrahedral cells is limited in the present work. The U-spline algorithm introduces a new technique for using local null space solutions to construct basis functions for the global spline null space problem. The U-spline construction is presented for curves, surfaces, and volumes with higher dimensional generalizations possible. A set of requirements are given to ensure that the U-spline basis is positive, forms a partition of unity, is complete, and is locally linearly independent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.