Abstract

We present a method to constrain the timing of fissure generation related to late Quaternary seismic events using the uranium-series technique. Dated samples were from travertine deposits precipitated in co-seismic extensional fissures along major active faults in Western Turkey. Stable isotope and REE data indicate that the precipitation of the fissure travertines was not controlled by the hydrologic regime that is responsible for the speolethem deposition in the same region. Moreover, the REE composition and concentration of the water from which the fissure travertine precipitated were significantly different from those of the current geothermal waters in the study area. The carbonate generation in the co-seismic fissures is interpreted to be the product of rapid precipitation from deeply infiltrated and CO 2-enriched surface water during seismic strain cycles. Results show that U-series dating of fracture-filling travertine deposits from seismically active areas provide important temporal information relevant to establishing recurrence intervals of late Quaternary and prehistoric major earthquake events. Precise dating of prehistoric earthquakes may be of great value for seismic hazard studies and earthquake forecasting research, for which accurate estimates of recurrence intervals are critical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.