Abstract
ABSTRACT Optical remotely sensed time series data have various key applications in Earth surface dynamics. However, cloud cover significantly hampers data analysis and interpretation. Despite synthetic aperture radar (SAR)-to-optical image translation techniques emerging as a promising solution, their effectiveness is diminished by their inability to adequately account for the intertwined nature of temporal and spatial dimensions. This study introduces U-SeqNet, an innovative model that integrates U-Net and Sequence-to-Sequence (Seq2Seq) architectures. Leveraging a pioneering spatiotemporal teacher forcing strategy, U-SeqNet excels in adapting and reconstructing data, capitalizing on available cloud-free observations to improve accuracy. Rigorous assessments through No Reference and Full Reference Image Quality Assessments (NR – IQA and FR – IQA) affirm U-SeqNet’s exceptional performance, marked by a Natural Image Quality Evaluator (NIQE) score of 5.85 and Mean Absolute Error (MAE) of 0.039. These results underline U-SeqNet’s exceptional capabilities in image reconstruction and its potential to improve remote sensing analysis by enabling more accurate and efficient multimodal and multitemporal cloud removal techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.