Abstract
This paper examines how well alternate time-changed Lévy processes capture stochastic volatility and the substantial outliers observed in U.S. stock market returns over the past 85 years. The autocorrelation of daily stock market returns varies substantially over time, necessitating an additional state variable when analyzing historical data. I estimate various one- and two-factor stochastic volatility/Lévy models with time-varying autocorrelation via extensions of the Bates (2006) methodology that provide filtered daily estimates of volatility and autocorrelation. The paper explores option pricing implications, including for the Volatility Index (VIX) during the recent financial crisis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.