Abstract

The efficiency of conventional fossil power plants is a strong function of the steam temperature and pressure. Research to increase both has been pursued worldwide, since the energy crisis in the 1970s. The need to reduce CO2 emissions has recently provided an additional incentive to increase efficiency. More recently, interest has been evinced in advanced combustion technologies utilizing oxygen instead of air for combustion. The main enabling technology in achieving the above goals is the development of stronger high temperature materials. Extensive research-and-development programs have resulted in numerous high-strength alloys for heavy section piping and for tubing needed to build boilers. The study reported on here is aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers that are capable of operating with steam at temperatures of 760 °C (1400 °F) and pressures of 35 MPa (5000 psi). The economic viability of such a plant has been explored. Candidate alloys applicable to various ranges of temperatures have been identified. Stress rupture tests have been completed on the base metal and on welds to a number of alloys. Steamside oxidation tests in an autoclave at 650 °C (1200 °F) and 800 °C (1475 °F) have been completed. Fireside corrosion tests have been conducted under conditions simulating those of waterwalls and superheater/reheater tubes. The weldability and fabricability of the alloys have been investigated. The capabilities of various overlay coatings and diffusion coatings have been examined. This article provides a status report on the progress achieved to date on this project.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.