Abstract

ABSTRACT The Sarduiyeh granitoid (SG) is intruded in the southeastern part of the Dehaj-Sarduiyeh volcano-sedimentary belt in the southeastern end of the Urumieh-Dokhtar Magmatic Arc (UDMA) in Iran. The medium-to-coarse-grained granitoid unit, with granular texture consists mainly of diorite, tonalite, granodiorite and monzogranitic rocks. Mineralogically, these rocks consist mainly of plagioclase, K-feldspar, quartz, biotite and hornblende. The whole rock geochemical analyses indicates that the SG is calc-alkaline, I-type, metaluminous, enriched in large ion lithophile elements (LILE; such as K, Cs, Pb) and depleted in high field strength elements (HFSE; such as Ti, Nb, Ta, Zr). Chondrite normalized plot of SG rare earth elements (REE) show light rare earth element enrichments with (LaN/YbN = 2.44–8.68) and flat heavy rare earth element patterns with (GdN/YbN = 1.02–1.36). The rather high Y (av. 19.35 ppm), low Sr content (av. 293.76 ppm) and low Cr and Ni contents (av. 20.1 and 4.69 ppm, respectively) of the SG demonstrate its normal calc-alkaline and non-adakitic nature, the features of Jebal Barez-type granitoids. The geochemical characteristics and isotopic composition, low ISr (0.7046–0.7049) and positive ɛtNd (+3.4 to +4.03) values, of the SG suggest that its parental magma formed as a result of partial melting from metabasic rocks of lower crust in a subduction-related arc setting. Fractionation of an assemblage dominated by plagioclase, K-feldspar, amphibole and magnetite may have been responsible for the evolution of the SG magma. U-Pb zircon geochronology gives an age of 27.95 ± 0.27 Ma for the SG, suggesting that the final collision between the Arabian plate and Central Iranian microcontinent may have happened in the Late Oligocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call