Abstract

Identifying and dating large impact structures is challenging, as many of the traditional shock indicator phases can be modified by post-impact processes. Refractory accessory phases, such as zircon, while faithful recorders of shock wave passage, commonly respond with partial U–Pb age resetting during impact events. Titanite is an accessory phase with lower Pb closure temperature than many other robust chronometers, but its potential as indicator and chronometer of impact-related processes remains poorly constrained. In this study, we examined titanite grains from the Sudbury (Ontario, Canada) and Vredefort (South Africa) impact structures, combining quantitative microstructural and U–Pb dating techniques. Titanite grains from both craters host planar microstructures and microtwins that show a common twin–host disorientation relationship of 74° about . In the Vredefort impact structure, the microtwins deformed internally and developed high- and low-angle grain boundaries that resulted in the growth of neoblastic crystallites. U–Pb isotopic dating of magmatic titanite grains with deformation microtwins from the Sudbury impact structure yielded a 207Pb/206Pb age of 1851 ± 12 Ma that records either the shock heating or the crater modification stage of the impact event. The titanite grains from the Vredefort impact structure yielded primarily pre-impact ages recording the cooling of the ultra-high-temperature Ventersdorp event, but domains with microtwins or planar microstructures show evidence of U–Pb isotopic disturbance. Despite that the identified microtwins are not diagnostic of shock-metamorphic processes, our contribution demonstrates that titanite has great potential to inform studies of the terrestrial impact crater record.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.