Abstract

ABSTRACTThe newly discovered Jiaojiguan deposit, a medium-scale skarn iron-tin polymetallic deposit on the Sino-Burma boundary of Yunnan Province (SW China), is spatially associated with the biotite monzonitic granite. Here, we report new in situ zircon LA-MC-ICP-MS U–Pb ages, trace element and Hf isotope data from the granite, and U–Pb dating ages of cassiterite from the ore bodies. In this study, we obtain a weighted mean 206Pb/238U age of 124.1 ± 1.4 Ma for the zircon and a 207Pb/206Pb-238U/206Pb intercept age of 123.8 ± 2.2 Ma for the cassiterite. The granite crystallized during the Early Cretaceous, with zircons exhibiting εHf(t) values from −5.8 to −0.6 and two-stage Hf model ages (TDM2) of 1.21–1.54 Ga. The close temporal and spatial links between pluton emplacement and ore-forming events suggest that magmatic-hydrothermal events were the key factors that triggered the genesis of the iron-tin polymetallic deposits in the area. Regional geochronological data show that tin mineralization took place three times during the Cretaceous–Palaeogene in the Tengchong block due to re-melting of the underlying supposed Proterozoic (1.5 ± 0.5 Ga) Sn-rich strata/materials. Compared with those in the Bangong–Nujiang metallogenic belt (BNMB), we propose that the Cretaceous iron-tin polymetallic mineralization events in Tengchong–Baoshan closely resemble those of the Bangong–Nujiang belt in northern Tibet, both of which have experienced similar tectono-magmatic-metallogenic histories since the Mesozoic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call