Abstract

An approximately 7 km thick, continuous sequence of granulite-facies rocks from the lower crust, which contains a lower granulite-pyriclasite unit and an upper metapelite unit, occurs in the NW Serre of the Calabrian massif. The lower crustal section is overlain by a succession of plutonic rocks consisting of blastomylonitic quartz diorite, tonalite, and granite, and is underlain by phyllonitic schists and gneisses. Discordant apparent zircon ages, obtained from granulites and aluminous paragneisses, indicate a minimum age of about 1,900 m.y. for the oldest zircon populations. The lower intersection point of the discordia with the concordia at 296±2 m.y. is also marked by concordant monazites. Therefore, the age of 296±2 m.y. is interpreted as the minimum age of granulite-facies metamorphism. Concordant zircon ages were obtained from a metamorphic quartz monzogabbronorite sill (298±5 m.y.) and an unmetamorphosed tonalite (295±2 m.y.); they are interpreted as the intrusion ages. Discordant zircon ages from a blastomylonitic quartz diorite gneiss, situated between the lower crustal unit and the non-metamorphosed tonalite, reveal recent or geologically young lead loss by diffusion. The 207Pb/206Pb ages of the two analysed size-fractions point to an intrusion age similar to that of the overlying tonalite. Rb-Sr mineral ages are younger in the granulite-pyriclasite unit than in the overlying metapelite unit. Feldspars from the granulite-pyriclasite unit yield ages of about 145 m.y. and those from the metapelite unit 176±5 m.y. In the same way, the biotite cooling ages range between 108 and 114 m.y. in the granulitepyriclasite and between 132 and 135 m.y. in the metapelite unit and the tonalite. Some still younger biotite ages are explained by the influence of tectonic shearing on the Rb-Sr systems. A muscovite from a postmetamorphic aplite in the metapelite unit yields a cooling age of 203±4 m.y. The Rb-Sr isotopic analyses from migmatite bands do not lie on an isochron, perhaps due to limited isotopic exchange between the small scale layers during the long cooling period after the peak of metamorphism. In the phyllonitic gneisses and schists a Hercynian metamorphism is indicated by a muscovite age of 268±4 m.y., whereas the biotite age of 43±1 m.y. from the same sample can be correlated with an Alpine greenschist-facies metamorphism. On the basis of the radiometric dates and of the P-T path of the lower crustal section deduced petrologically, the following model is presented: the end of the Hercynian granulite-facies metamorphism was accompanied by an uplift of the lower crustal rocks into intermediate crustal levels and by synchronous plutonic intrusions into the lower crust and higher crustal levels, but essentially into the latter. Substantial further uplift did not occur until after cooling from the temperature of the granulite-facies metamorphism to the biotite closing temperature. This cooling lasted for about 185 m.y. in the lower part and for about 160 m.y. in the upper part of the lower crust section. A comparison between the geologic evolutions of the NW Serre of Calabria and the Ivrea Zone of the Alps demonstrates striking similarities. The activity of deep seated faults in both areas at least since late Hercynian time raises the possibility that a fault precursor of the boundary of the Adriatic microplate already existed at this time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call