Abstract

Rejecting outlier correspondences is one of the critical steps for successful feature-based two-view geometry estimation, and contingent heavily upon local context exploration. Recent advances focus on devising elaborate local context extractors whereas typically adopting explicit neighborhood relationship modeling at a specific scale, which is intrinsically flawed and inflexible, because 1) severe outliers often populated in putative correspondences and 2) the uncertainty in the distribution of inliers and outliers make the network incapable of capturing adequate and reliable local context from such neighborhoods, therefore resulting in the failure of pose estimation. This prospective study proposes a novel network called U-Match that has the flexibility to enable implicit local context awareness at multiple levels, naturally circumventing the aforementioned issues that plague most existing studies. Specifically, to aggregate multi-level local context implicitly, a hierarchy-aware graph representation module is designed to flexibly encode and decode hierarchical features. Moreover, considering that global context always works collaboratively with local context, an orthogonal local-and-global information fusion module is presented to integrate complementary local and global context in a redundancy-free manner, thus yielding compact feature representations to facilitate correspondence learning. Thorough experimentation across relative pose estimation, homography estimation, visual localization, and point cloud registration affirms U-Match's remarkable capabilities. Our code is publicly available at https://github.com/ZizhuoLi/U-Match.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.