Abstract

We introduce the relations [Formula: see text] and [Formula: see text] with respect to a subset U of idempotents. Based on [Formula: see text] and [Formula: see text], we define a new class of semigroups which we name U-concordant semigroups. Our purpose is to describe U-concordant semigroups by generalized categories over a regular biordered set. We show that the category of U-concordant semigroups and admissible morphisms is isomorphic to the category of RBS generalized categories and pseudo functors. Our approach is inspired from Armstrong’s work on the connection between regular biordered sets and concordant semigroups. The significant difference in strategy is by using RBS generalized categories equipped with pre-orders, we have no need to discuss the quotient of a category factored by a congruence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.