Abstract

ABSCISIC ACID-INSENSITIVE3 (ABI3) and ABI5 are 2 crucial transcription factors in abscisic acid (ABA) signaling, and their homeostasis at the protein level plays a decisive role in seed germination and subsequent seedling growth. Here, we found that PLANT U-BOX 8 (PUB8), a U-box E3 ubiquitin ligase, physically interacts with ABI3 and ABI5 and negatively regulates ABA responses during early Arabidopsis (Arabidopsis thaliana) seedling growth. Loss-of-function pub8 mutants were hypersensitive to ABA-inhibited cotyledon greening, while lines overexpressing PUB8 with low levels of ABI5 protein abundance were insensitive to ABA. Genetic analyses showed that ABI3 and ABI5 were required for the ABA-sensitive phenotype of pub8, indicating that PUB8 functions upstream of ABI3 and ABI5 to regulate ABA responses. Biochemical analyses showed that PUB8 can associate with ABI3 and ABI5 for degradation through the ubiquitin-mediated 26S proteasome pathway. Correspondingly, loss-of-function of PUB8 led to enhanced ABI3 and ABI5 stability, while overexpression of PUB8 impaired accumulation of ABI3 and ABI5 in planta. Further phenotypic analysis indicated that PUB8 compromised the function of ABI5 during early seedling growth. Taken together, our results reveal the regulatory role of PUB8 in modulating the early seedling growth by controlling the homeostasis of ABI3 and ABI5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call