Abstract

We study Kosterlitz-Thouless (KT) transitions of the Larkin-Ovchinnikov (LO) phase for a two-dimensional system composed of coupled one-dimensional tubes of fermions. The LO phase here is characterized by a stripe structure (periodic in only one direction) in the order parameter. The low energy excitations involve the oscillation of the stripe and the fluctuation of the phase, which can be described by an effective theory composed of two anisotropic XY models. We compute from a microscopic model the coefficients of the XY models from which the KT transition temperatures are determined. We found the $T^{KT} \propto t_{\perp}$ for small intertube tunneling $t_{\perp}$. As $t_{\perp}$ increases the system undergoes a first-order transition to the normal phase at zero temperature. Our method can be used to determine the Goldstone excitations of any stripe order involving charge or spin degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.