Abstract

Osteoclast (OC) differentiation requires that precursors, such as macrophage colony-stimulating factor (M-CSF)-dependent bone marrow macrophages, receive signals transduced by receptor activator of nuclear factor kappaB (RANK) and c-Fms, receptors for RANK ligand (RANKL) and M-CSF, respectively. Activated c-Fms autophosphorylates cytoplasmic tail tyrosine residues, which, by recruiting adaptor molecules, initiate specific signaling pathways. To identify which tyrosine residues are involved in c-Fms signaling in primary cells, we retrovirally transduced M-CSF-dependent bone marrow macrophages with a chimera comprising the external domain of the erythropoietin (Epo) receptor linked to the transmembrane and cytoplasmic domains of c-Fms. Transduced cells differentiate into bone-resorbing osteoclasts when treated with RANKL and either M-CSF or Epo, confirming that both endogenous and chimeric receptors transmit osteoclastogenic signals. Cells expressing chimeric receptors with Y(697)F, Y(706)F, Y(721)F, and Y(921)F single point mutations generate normal numbers of bone-resorbing OCs, with normal bone-resorbing activity when treated with RANKL and Epo. In contrast, those expressing Y(559)F generate fewer OCs, whereas theY807F mutant is incapable of osteoclastogenesis. Finally, although mature OCs expressing Y(559)F exhibit impaired bone resorption, those bearing Y807F do not. Thus, we have identified specific tyrosine residues in the cytoplasmic tail of c-Fms that are critical for transmitting M-CSF-initiated signals individually required for OC formation or function, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call