Abstract

The effects of Rho-specific modifying toxins on the tyrosine phosphorylation of endothelial cell proteins were investigated. Incubation of the cells with the Rho-activating toxin cytotoxic necrotizing factor 1 (CNF1) induced a marked increase in the tyrosine phosphorylation of a number of signalling intermediates of the vascular endothelial growth factor (VEGF)-mediated cascade, including focal adhesion kinase, paxillin, phospholipase Cgamma1 and a Shc-associated protein of 195 kDa. Both CNF1- and VEGF-dependent tyrosine phosphorylation of these proteins were significantly reduced by prior incubation with C3 transferase, a known inhibitor of RhoA function, suggesting a Rho-dependent mechanism. The stimulation of endothelial cells with CNF1 resulted in a marked increase in the tyrosine phosphorylation of the VEGF receptor (VEGFR)-2, which was correlated with a stimulation of its kinase activity and with its association with downstream tyrosine phosphorylated proteins. The stimulatory effect of CNF1 was specific for VEGFR-2 since the phosphotyrosine content of VEGFR-1 was not affected by the toxin. Transient overexpression of a dominant-active RhoA mutant also induced an increase in the tyrosine phosphorylation of the VEGFR-2, whereas overexpression of a dominant-inactive form of the protein was without effect. Taken together, these results indicate that Rho proteins may play an important role in angiogenesis by modulating the tyrosine phosphorylation levels of VEGFR-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.