Abstract

X-linked recessive Emery-Dreifuss muscular dystrophy (EDMD) is caused by loss of emerin, a nuclear-membrane protein with roles in nuclear architecture, gene regulation and signaling. Phosphoproteomic studies have identified 13 sites of tyrosine phosphorylation in emerin. We validated one study, confirming that emerin is hyper-tyrosine-phosphorylated in Her2-overexpressing cells. We discovered that non-receptor tyrosine kinases Src and Abl each phosphorylate emerin and a related protein, LAP2beta, directly. Src phosphorylated emerin specifically at Y59, Y74 and Y95; the corresponding triple Y-to-F (;FFF') mutation reduced tyrosine phosphorylation by approximately 70% in vitro and in vivo. Substitutions that removed a single hydroxyl moiety either decreased (Y19F, Y34, Y161F) or increased (Y4F) emerin binding to BAF in cells. Y19F, Y34F, Y161F and the FFF mutant also reduced recombinant emerin binding to BAF from HeLa lysates, demonstrating the involvement of both LEM-domain and distal phosphorylatable tyrosines in binding BAF. We conclude that emerin function is regulated by multiple tyrosine kinases, including Her2, Src and Abl, two of which (Her2, Src) regulate striated muscle. These findings suggest roles for emerin as a downstream effector and ;signal integrator' for tyrosine kinase signaling pathway(s) at the nuclear envelope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.