Abstract

The phosphorylation characteristics of insulin receptor from control and insulin-treated rat H-35 hepatoma cells 32P-labeled to equilibrium have been documented. The 32P-labeled insulin receptor is isolated by immunoprecipitation with patient-derived insulin receptor antibodies in the presence of phosphatase and protease inhibitors to preserve the native phosphorylation and structural characteristics of the receptor. The unstimulated insulin receptor contains predominantly [32P] phosphoserine and trace amounts of [32P]phosphothreonine in its beta subunit. In response to insulin, the insulin receptor beta subunit exhibits marked tyrosine phosphorylation and a 2-fold increase in total [32P]phosphoserine contents. High pressure liquid chromatography of the tryptic hydrolysates of the 32P-labeled receptor beta subunit from quiescent cells results in the resolution of up to 9 fractions containing [32P]phosphoserine. The insulin-stimulated tyrosine phosphorylation is concentrated in two of these receptor phosphopeptide fractions, whereas the increase in [32P]phosphoserine content is scattered in low abundance over all receptor tryptic fractions. Insulin receptors affinity-purified by lectin- and insulin-agarose chromatographies from insulin-treated, 32P-labeled cells exhibit a 22-fold increase in the Vmax of receptor tyrosine kinase activity toward histone when compared to controls. The elevated kinase activity of the insulin receptor derived from insulin-treated cells is not due to the presence of hormone bound to the receptor because the receptor kinase activity is assayed while immobilized on insulin-agarose. Furthermore, the insulin-activated receptor kinase activity is reversed following dephosphorylation of the receptor beta subunit with alkaline phosphatase in vitro. The correlation between the insulin-stimulated site specific tyrosine phosphorylation on receptor beta subunit and the elevation of receptor tyrosine kinase activity strongly suggests that the insulin receptor kinase is activated by hormone-stimulated autophosphorylation on tyrosine residues in intact cells, as previously demonstrated for the purified receptor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.