Abstract

Endothelial nitric oxide (NO) synthase (eNOS) is known to play a cardioprotective protective. However, the molecular mechanisms regulating eNOS activity during ischaemia/reperfusion (I/R) injury are incompletely understood. eNOS is a substrate for several kinases that positively or negatively affect its enzymatic activity. Herein, we sought to correlate eNOS phosphorylation status with cardiomyocyte survival and we investigated the contribution of the proline-rich tyrosine kinase 2 (PYK2)/eNOS axis to the regulation of myocardial infarct size in vivo. Exposure of H9c2 cardiomyocytes to H2O2 lead to PYK2 phosphorylation on its activator site (Y402) and eNOS phosphorylation on the inhibitor site Y656 and the activator site S1176. Both H2O2-induced eNOS phosphorylation events were abolished by PYK2 pharmacological inhibition or gene knockdown. Activity assays demonstrated that phosphorylation of the tyrosine inhibitory site exerts a dominant effect over S1176. In cardiomyocytes subjected to oxidative stress or oxygen-glucose deprivation, inhibition of PYK2 limited cell injury; this effect was prevented by inhibition of NO production. In vivo, ischaemia-reperfusion induced an early activation of PYK2, leading to eNOS phosphorylation on Y656, which, in turn, reduced NO output, as judged by the low tissue levels of its downstream effector cGMP. Moreover, pharmacological blockade of PYK2 alleviated eNOS inhibition and prevented cardiac damage following I/R injury in wild-type, but not in eNOS KO mice. The current studies demonstrate that PYK2 is a pivotal regulator of eNOS function in myocardial infarction and identify PYK2 as a novel therapeutic target for cardioprotection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call