Abstract
Thromboxane A(2) (TxA(2)) is a potent vasoconstrictor and platelet agonist. Pharmacological studies have defined two classes of thromboxane receptors (TPs) in human platelets; sites that bind the agonist 1S-(1,2(5Z),3-(1E,3S),4)-7- 3-(3-hydroxy-4-(4'-iodophenoxy)-1-butenyl)-7-oxabicyclo-2.2. 1-heptan-2-yl-5-heptenoic acid (I-BOP) with high affinity support platelet shape change, whereas low affinity sites that bind irreversibly the antagonist GR 32191 transduce platelet aggregation. As the mechanisms of signal transduction involved in platelet aggregation begin to be elucidated, few results concern those involved in platelet shape change, which is independent of the engagement of GPIIb/IIIa. To elucidate the respective role of the two classes of pharmacological binding sites of TPs in shape change, platelets were incubated with I-BOP at low concentrations or stimulated by I-BOP at high concentrations after pretreatment with GR 32191 or activated with low concentrations of 8-epi-prostaglandin F(2)alpha. Under these three conditions, there is a rapid stimulation of protein tyrosine phosphorylation of the 80/85-kDa doublet identified as the cytoskeletal protein cortactin. Tyrosine phosphorylation of cortactin is kinetically correlated with the occurrence of shape change. These biochemical and morphological events are both inhibited by SQ 29548, a TP antagonist, indicating the specificity of the signal. Since tyrosine kinase Syk was activated early during platelet activation, we examined the possibility that cortactin is a potential substrate of Syk in TxA(2)-induced platelet shape change. p72 Syk phosphorylation and kinase activity took place during the period when platelets were changing shape upon low concentrations of I-BOP stimulation. Furthermore, cortactin was associated with Syk, and this association increases along with the level of phosphorylation. These data suggest a novel pathway for a G protein-coupled TxA(2) high affinity receptor to the protein-tyrosine kinase Syk, which is associated with cortactin in the very early steps of platelet activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.