Abstract

LRRK2 mutations are the leading cause of familial Parkinson's disease (PD) and are a significant risk factor for idiopathic PD cases. However, the molecular mechanisms underlying the degeneration of dopaminergic (DA) neurons in LRRK2 PD patients remain unclear. To determine the translatomic impact of LRRK2 expression in DA neurons, we employed gene set enrichment analysis (GSEA) to analyze a translating ribosome affinity purification (TRAP) RNA-seq dataset from a DA-neuron-specific-expressing Drosophila model. We found that the tyrosine metabolism pathway, including tyrosine hydroxylase (TH), is downregulated in DA neurons with LRRK2 overexpression; in contrast, the Hippo signaling pathway is downregulated in the G2019S mutant compared to wild-type LRRK2 in the DA neurons. These results imply that the downregulation of tyrosine metabolism occurs before pronounced DA neuron loss and that LRRK2 may downregulate the tyrosine metabolism in a DA-neuron-loss-independent way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.