Abstract

SARS-CoV-2 is the viral agent responsible for the pandemic that in the first months of 2020 caused about 400,000 deaths. Among compounds proposed to fight the SARS-CoV-2-related disease (COVID-19), tyrosine kinase inhibitors (TKIs), already effective in Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML), have been proposed on the basis of their antiviral action already demonstrated against SARS-CoV-1. Very few cases of COVID-19 have been reported in Ph+ ALL and in CML Italian cohorts; authors suggested that this low rate of infections might depend on the use of TKIs, but the biological causes of this phenomenon remain unknown. In this study, the CML model was used to test if TKIs would sustain or not the viral replication and if they could damage patient immunity. Firstly, the infection and replication rate of torquetenovirus (TTV), whose load is inversely proportional to the host immunological control, have been measured in CML patients receiving nilotinib. A very low percentage of subjects were infected at baseline, and TTV did not replicate or at least showed a low replication rate during the follow-up, with a mean load comparable to the measured one in healthy subjects. Then, after gene expression profiling experiments, we found that several “antiviral” genes, such as CD28 and IFN gamma, were upregulated, while genes with “proviral” action, such as ARG-1, CEACAM1, and FUT4, were less expressed during treatment with imatinib, thus demonstrating that TKIs are not detrimental from the immunological point of view. To sum up, our data could offer some biological explanations to the low COVID-19 occurrence in Ph+ ALL and CML patients and sustain the use of TKIs in COVID-19, as already proposed by several international ongoing studies.

Highlights

  • In March 2020, the pandemic sustained by the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) was officially declared, involving the entire world, after which a new Coronavirus was isolated for the first time in China, in the Hubei province, in December 2019

  • Translated in the COVID-19 context, if tyrosine kinase inhibitors (TKIs) would sustain the coronavirus infection or replication, we might expect to observe a significant increase of TTV load during treatment of our patients with nilotinib

  • Nilotinib Cohort TTV load was measured by quantitative real-time PCR in 60 peripheral blood samples from 10 chronic myeloid leukemia (CML) patients in the chronic phase receiving nilotinib as a first-line therapy

Read more

Summary

Introduction

In March 2020, the pandemic sustained by the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) was officially declared, involving the entire world, after which a new Coronavirus was isolated for the first time in China, in the Hubei province, in December 2019. The disease caused by SARS-CoV-2, known as Coronavirus Disease 19 (COVID-19), is characterized by different clinical manifestations and severity, ranging from cough and cold across fever and mild symptoms to capillary leak, respiratory distress, thrombotic events, and renal, hepatic, and coagulation failure [1]. DPP4 axis is used by virus for blocking autophagy, for impairing host immune response and sustaining the hyper-inflammatory status [5]. Both angiotensin and CD26 are involved in the senescence phenomenon, which, in addition to being responsible for further virus dissemination, might explain why COVID-19 is more severe in older people and why azithromycin seems to be effective [6]. Coronavirus enters the human cells via a pH- and receptor-dependent way [7]; once it has entered the host cells, the virus uses the proteasome ubiquitin system to destroy the host antiviral proteins and increase the production of those proteins that are necessary for its replication [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call