Abstract

A sensitive assay of multiple mRNAs by reverse transcriptase-polymerase chain reaction was adopted to study the hormonally regulated expression of steroidogenic enzymes in primary rat granulosa cells in culture. As little as 15-60 ng total RNA prepared from cultured cells were reverse transcribed in the presence of pd(T)6, and polymerase chain reaction was conducted in the presence of specific oligonucleotide pairs designed to identify cDNAs of steroidogenic enzymes. In combination with Northern blot analysis of cholesterol side-chain cleavage cytochrome P450 (P450scc) message, it is shown that a novel protein kinase inhibitor, tyrphostin AG18, arrests the FSH-induced accumulation of P450scc mRNA. This inhibition is dose dependent (IC50, 15 microM) and reversible. The addition of 80 microM AG18 to cells containing high levels of P450scc mRNA caused a rapid decline of the cytochrome message (t 1/2, 5 h), similar to the effect of 30 micrograms/ml alpha-amanitin. However, concomitant addition of the two drugs did not accelerate the mRNA degradation process, suggesting that AG18 does not affect message stabilization. Tyrphostin AG18 did not affect mRNA species that are not FSH inducible, such as the ribosomal protein L19, or the constitutively expressed low levels of steroid 5 alpha-reductase mRNA. Moreover, even the extremely high levels of P450scc mRNA in granulosa-lutein cells, being cAMP independent and terminally differentiated a few hours after LH surge, were not affected by the addition of AG18 in culture. In contrast, two additional key and FSH-inducible steroidogenic enzymes, i.e. aromatase cytochrome P450 and 3 beta-hydroxysteroid dehydrogenase-I, were inhibited by AG18 at their mRNA levels. These results suggest that an as yet undetermined tyrosine kinase pathway is involved in the cAMP-dependent signal transduction pathway of FSH action, so that the presence of AG18 does not allow FSH induction of gene expression to occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.