Abstract

Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles and amyloid plaques, which are abnormal protein deposits. The major constituent of the plaques is the neurotoxic beta-amyloid peptide (Abeta); the genetics of familial AD support a direct role for this peptide in AD. Abeta neurotoxicity is linked to hydrogen peroxide formation. Abeta coordinates the redox active transition metals, copper and iron, to catalytically generate reactive oxygen species. The chemical mechanism underlying this process is not well defined. With the use of density functional theory calculations to delineate the chemical mechanisms that drive the catalytic production of H2O2 by Abeta/Cu, tyrosine10 (Y10) was identified as a pivotal residue for this reaction to proceed. The relative stability of tyrosyl radicals facilitates the electron transfers that are required to drive the reaction. Confirming the theoretical results, mutation of the tyrosine residue to alanine inhibited H2O2 production, Cu-induced radicalization, dityrosine cross-linking, and neurotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.