Abstract

A new approach for the design and synthesis of cyclic N-halamine polymers having anti-bacterial activity based on a vinyl derivative of tyrosine-derived hydantoin is reported. The synthesis of N-halamine polymers generally involves the chemical modification of 5,5′-disubstituted hydantoin to introduce polymerizable vinyl moieties thereby restricting the halogen capture only on the amide nitrogen. Here we show the possibility of synthesizing vinyl monomers of N-halamine from α-amino acids wherein both the amide and imide nitrogens are available for halogen capture. Thus, a hydantoin monomer was synthesized from L-tyrosine and copolymerized with methyl methacrylate and 2-(hydroxyethyl)methacrylate, to obtain random co-polymers. The monomer and its co-polymers were characterized using NMR, IR, HRMS, GPC, DSC, EDAX and TGA analysis. Films of the co-polymers cast from 10% acetone solutions were exposed to sodium hypochlorite solution to activate the hydantoin moieties. The oxidative chlorine content of the films ranged from 0.6 to 0.9%. The activated films were exposed to both Gram positive (S. aureus) and Gram negative (E. coli) bacteria using standard protocols. Polymers having chlorine content as little as 0.6% exhibited 6 log reduction in the bacterial growth within 30 min of exposure. The method allows the halogenation of both amide and imide nitrogens and could be applied to the preparation of a number of vinyl hydantoins from many amino acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call