Abstract

Nanoparticles have been increasingly used as sensors for several organic and inorganic analytes. In this work, we report a study on the synthesis of novel highly fluorescent l-Tyr capped silver nanoparticles (AgNPs) and their use for the determination of metal ions. The AgNPs have been characterized by TEM, UV–Vis and Photoluminescence (PL) spectroscopy and dynamic light scattering (DLS) measurements and used for the quantitative determination of Co(II) and Cu(II) ions. In the l-Tyr capped AgNPs, the α-amino and α-carboxyl groups of the surface-confined amino acid can coordinate the entitled metal ions, giving rise to a decrease of the silver surface plasmon absorption, that is linearly correlated with the metal ions concentrations. The addition of Co(II) and Cu(II) solutions to the l-Tyr AgNPs also induces a paramagnetic quenching of the fluorescence in the PL spectra and the related Stern Volmer plots highlight a linear correlation over the whole concentration range for both metal ions, with a more pronounced effect for the copper(II) ion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call