Abstract
Characterizing the protein constituents of a specific organelle and protein neighbors of a protein of interest (POI) is essential for understanding the function and state of the organelle and protein networks associated with the POI. Proximity labeling (PL) has emerged as a promising technology for specific and efficient spatial proteomics. Nevertheless, most enzymes adopted for PL still have limitations: APEX requires cytotoxic H2O2 for activation and thus is poor in biocompatibility for in vivo application, BioID shows insufficient labeling kinetics, and TurboID suffers from high background biotinylation. Here, we introduce a bacterial tyrosinase (BmTyr) as a new PL enzyme suitable for H2O2-free, fast (≤10 min in living cells), and low-background protein tagging. BmTyr is genetically encodable and enables subcellular-resolved PL and proteomics in living cells. We further designed a strategy of ligand-tethered BmTyr for in vivo PL, which unveiled the surrounding proteome of a neurotransmitter receptor (Grm1 and Drd2) in its resident synapse in a live mouse brain. Overall, BmTyr is one promising enzyme that can improve and expand PL-based applications and discoveries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.