Abstract
Background Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants. In the traditional medicine plants of the genus Asphodelus are used to treat skin disorders such as ectodermal parasites, psoriasis, microbial infection and for lightening freckles. In order to find novel skin depigmenting agents, the present work was carry out to evaluate antioxidant activity and tyrosinase inhibitory potential of leaves, flowers and tubers extracts of A. microcarpus. The phytochemical composition of the active extract was also evaluated.MethodsThree different extracts (water, methanol and ethanol) from leaves, flowers and tubers of A. microcarpus were evaluated for their inhibitory effect on tyrosinase activity using l-3,4-dihydroxyphenylalanine (l-DOPA) as substrate. Inhibition of cellular tyrosinase activity and melanin production was also investigated in melanoma B16F10 cells. Antioxidant activity, total phenolic and flavonoids contents were determined using standard in vitro methods. HPLC-DAD-MS was used to identify phenolic profile of the active extract.ResultsThe results showed that all extracts have a direct inhibitory anti-tyrosinase activity, with ethanolic extract from flowers (FEE) exhibiting the stronger effect. Kinetic analysis revealed that FEE acts as an uncompetitive inhibitor with a Ki value of 0.19 mg/mL. The same effect was observed in murine melanoma B16F10 cells. Cellular tyrosinase activity as well as melanin content were reduced in FEE-treated cells. The results were comparable to that of the standard tyrosinase inhibitor (kojic acid). Furthermore, the same extract showed the highest antioxidant activity and an elevated levels of total phenolics and flavonoid content. Eleven phenolic components were identified as chlorogenic acid, luteolin derivates, naringenin and apigenin.ConclusionsOur findings showed that FEE from A. microcarpus inhibits tyrosinase and exerted antimelanogenesis effect in B16F10 cells. This extract also showed the highest scavenging activity, which could be mainly attributed to its high levels of total polyphenols and flavonoids. These results suggest that A. microcarpus has a great potential as sources of bioactive compounds which could be used as depigmenting agents in skin disorders.
Highlights
Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants
Currently available tyrosinase inhibitors suffer from toxicity and/or a lack of efficacy and there is a constant quest for better inhibitors from natural sources as they are expected to be free of harmful side effects [5, 6]
The aim of this study was to investigate the inhibitory activity of three different extracts of A. microcarpus on tyrosinase activity and on melanogenesis in B16F10 melanoma cells
Summary
Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants. In the traditional medicine plants of the genus Asphodelus are used to treat skin disorders such as ectodermal parasites, psoriasis, microbial infection and for lightening freckles. In order to find novel skin depigmenting agents, the present work was carry out to evaluate antioxidant activity and tyrosinase inhibitory potential of leaves, flowers and tubers extracts of A. microcarpus. Tyrosinase (EC 1.14.18.1) is the key enzyme in the first two steps of melanin biosynthesis, catalyzing the hydroxylation L-tyrosine to the 3,4-dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Overproduction and accumulation of melanin occur in several skin disorders including solar melanosis, ephelides, melasma, senile lentigos and postinflammatory hyperpigmentation [4]. Since tyrosinase is the limiting step enzyme in melanogenesis, its inhibitors have become increasingly important as depigmenting agents in hyperpigmentation disorders. Currently available tyrosinase inhibitors suffer from toxicity and/or a lack of efficacy and there is a constant quest for better inhibitors from natural sources as they are expected to be free of harmful side effects [5, 6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.