Abstract

In this paper the results of an experimental activity carried out with the aim to investigate on the frictional behaviour of visco-elastic materials in sliding contact with road asperities is presented. Experiments are carried out using a prototype of pin on disk machine whose pin is constituted by a specimen of rubber coming from a commercial tyre while the disk may be in glass, marble or abrasive paper. Tests are performed both in dry and wet conditions. Roughness of the disk materials is evaluated by a tester and by a laser scan device. Temperature in proximity of the contact patch is measured by pyrometer pointed on the disk surface in the pin trailing edge, while room temperature is measured by a thermocouple. Sliding velocity is imposed by an inverter controlled motor driving the disk and measured by an incremental encoder. Vertical load is imposed applying calibrated weights on the pin and friction coefficients are measured acquiring the longitudinal forces signal by means of a load cell. As regards to the road roughness, the experimental results show a marked dependence with road Ra index. Dry and wet tests performed on different micro-roughness profiles (i.e. glass and marble) highlighted that friction coefficient in dry conditions is greater on smoother surfaces, while an opposite tendency is shown in wet conditions. Although affected by uncertainties the results confirm the dependence of friction on temperature, vertical load and track conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.