Abstract
Progress in reducing actuator delays in pneumatic brake systems creates an opportunity for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require knowledge of variables that are impractical to measure directly. This paper introduces a braking force observer and road surface identification algorithms to support a sliding-mode slip controller for air-braked heavy vehicles. Both the force observer and the slip controller are shown to operate robustly under a variety of conditions in quarter-car simulations. A non-linear least-squares algorithm was found to be capable of performing regressions on all the parameters of the tyre model from the University of Michigan Transportation Research Institute when used ‘in the loop’ with the controller and the observer. A recursive least-squares algorithm that is less computationally expensive than the non-linear algorithm was also investigated but gave only reasonable estimates of the tyre model parameters on high-friction smooth roads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.