Abstract

Stress responses impact the immune systems, growth, and reproduction of aquatic organisms. Neuroendocrine regulation involving biogenic amines, including octopamine (OA), plays a pivotal role in maintaining physiological balance during stress. This study focuses on the synthesis pathway of OA, particularly the role of tyramine beta hydroxylase (TBH), in Litopenaeus vannamei under stress. TBH catalyzes the conversion of tyramine to OA, a process critical for physiological responses. The present study demonstrated LvTBH at the protein level under different stress conditions during acute (0.5, 1, 2 h) and chronic stress (24, 72, 168 h) periods. LvTBH increased in thoracic ganglia within 2 h under hyperthermal stress, accompanied by elevated OA levels. Conversely, LvTBH decreased in the brain and circumesophageal connective tissues during acute and chronic hypothermal stress. Additionally, LvTBH increased in the brain and circumesophageal connective tissues under acute infection stress, coinciding with elevated OA levels. These findings collectively contribute to a more intricate understanding of the neuroendocrine dynamics within L. vannamei under stress, underscoring the role of TBH in orchestrating responses crucial for adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.