Abstract
Unmarshalling primitives in statically typed language require, in order to preserve type safety, to dynamically verify the compatibility between the incoming values and the statically expected type. In the context of programming languages based on parametric polymorphism and uniform data representation, we propose a relation of compatibility between (unmarshalled) memory graphs and types. It is defined as constraints over nodes of the memory graph. Then, we propose an algorithm to check the compatibility between a memory graph and a type. It is described as a constraint solver based on a rewriting system. We have shown that the proposed algorithm is sound and semi-complete in presence of algebraic data types, mutable data, polymorphic sharing, cycles, and functional values, however, in its general form, it may not terminate. We have implemented a prototype tailored for the OCaml compiler [17] that always terminates and still seems sufficiently complete in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.