Abstract

The goal of this study was to develop a reproducible method for molecular typing strains of Oenococcus oeni, and also to apply it in the study of population dynamics of these strains during malolactic fermentation of wine. A new method of multiplex randomly amplified polymorphic DNA (RAPD)-PCR has been developed, based on the combination of one random 10-mer and one specific 23-mer oligonucleotide in a single PCR. This method generates unique and discriminant DNA profiles for strains of O. oeni. The strains of this species were also clearly distinguished from other species of lactic acid bacteria. The method was applied to study the dynamics of O. oeni strains during malolactic fermentation, in three vintages in the same cellar. A fast and reliable method for typing strains of O. oeni has been designed and optimized. It improves the reproducibility and rapidity of conventional RAPD-PCR, and it has been validated monitoring the population dynamics during malolactic fermentation. This method will be a good tool to study the population dynamics of bacteria during malolactic fermentation and to evaluate the performance of new malolactic starter cultures and their dominance over the native microbiota.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.