Abstract

Aquatic collagens, as the alternative sources of mammalian collagen, have received increasing attention due to its low-cost, low-antigenicity, biocompatibility, and biodegradability. Pepsin-soluble collagens were extracted from the skins of Oreochromis mossambicus (Om-PSC) and Gadus macrocephalus (Gm-PSC), and their structural properties and bioactivities were probed to reveal their potential applications in biomedical material for tissue engineering. The results of Fourier transforms-infrared spectroscopy (FT-IR), circular dichroism (CD), X-ray diffraction (XRD), ultraviolet (UV) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that Om-PSC and Gm-PSC had similar and intact triple helical structures. The amino acid composition and peptide profiles revealed Om-PSC and Gm-PSC were identified as type I collagen with the typical repetitive sequence of (Gly-X-Y) n. However, the denaturation temperature (Td) was determined to be 29.7 ℃ of Om-PSC, much higher than that of Gm-PSC (17.3 ℃). Toxicological experiments demonstrated Om-PSC and Gm-PSC both had good biocompatibility and cytocompatibility, which met the requirements of medical materials. Fluorescence imaging and cell cycle distribution revealed Om-PSC and Gm-PSC could promote the proliferation of fibroblast and osteoblast cells. Therefore, Om-PSC and Gm-PSC showed the advantages in medical materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.