Abstract

Fragment kinetic energy is an important parameter to characterize the damage power of fragments. In this study, an acoustic emission technology-based method to evaluate fragment kinetic energy is proposed. The dynamic response of the fragment impacting an aluminum alloy target plate and the relationship between the initial kinetic energy of the fragment impact and the acoustic emission waveform were theoretically evaluated; the numerical simulation of typical spherical fragments (8 mm diameter) penetrating the aluminum alloy target plate was performed, the wavelet energy of the acoustic emission signal was obtained using wavelet packet theory, and a mathematical model of wavelet energy and fragment kinetic energy was constructed. A fragment kinetic energy test system was established, and a fragment penetration test was performed. The analysis showed that the wavelet energy mathematical models and the fragment kinetic energy exhibited favorable consistency, and the measurement errors of the three experiments were 3%, 3.7%, and 3%. This demonstrates the effectiveness of the typical acoustic emission fragment kinetic energy test methods proposed in this study and establishes a new method for the direct measurement of fragment kinetic energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.