Abstract
The flow in an enclosed co‐rotating disk pair is investigated by Laser Doppler Velocimetry (LDV) measurements and flow visualizations. First, the typical flow structure at Re = 5.25 × 105 and S = 0.09 is clarified. The flow fields in the r – θ and the r – z planes are both investigated and then divided into several flow regions based on the distinct flow types observed. The flow regions found in the two different planes are also compared and integrated. Second, with S fixed, the dependence of the flow field structure upon the Reynolds number is discussed. Three regimes of the r – θ plane flow with different Reynolds numbers are identified based on the measured mean velocity and spectral intensity. When Re < 1.6 × 105, no solid body region is found and the flow is in a laminar regime. In the range 1.6 × 105 ≤ Re ≤ 2.0 × 106, the solid body region and the outer region vortices coexist, and an empirical equation is developed to estimate the number of vortices. When Re > 2.0 × 106, the flow becomes turbulent. As Re increases from 9.3 × 104 to 5.25 × 105, the spectral intensity initially increases and then decreases before increasing again to an even higher level, resulting in an increasing sawtooth pattern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.