Abstract
Type-2 fuzzy sets provide an efficient vehicle for handling uncertainties of real-world problems, including noisy observations. Bringing type-2 fuzzy sets to clustering algorithms offers more flexibility to handle uncertainties associated with membership concepts caused by a noisy environment. However, the existing type-2 fuzzy clustering algorithms suffer from a time-consuming type-reduction process, which not only hampers the clustering performance but also increases the burden of understanding the clustering results. In order to alleviate the problem, this article introduces a set of typical characteristics of type-2 fuzzy sets and establishes a characteristic-based type-2 fuzzy clustering algorithm. Being different from the objective function used in the fuzzy C-means (FCM) algorithm that produces cluster centers and type-1 memberships, the objective function in the proposed algorithm contains additional characteristics of type-2 membership grades, namely, centers of gravity and cardinalities of the secondary fuzzy sets. The derived iterative formulas used for these parameters are much more efficient than the interval type-2 FCM algorithm. The experiments carried out in this study show that the proposed typical characteristic-based type-2 FCM algorithm has an ability of detecting noise as well as assigning suitable membership degrees to the individual data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.