Abstract

The effect of a sound field on wastewater treatment with a fluidized bed photocatalytic reactor (FBPR) was investigated. With Alizarin Green (AG) being the sole infectant, the Fe-doped TiO2 catalyst prepared was used as the fluidized media. According to the Langmuir-Hinshelwood model, the photocatalytic degradation follows the pseudo-first-order reaction kinetics with respect to the concentration of AG. Sound field application allowed the fluidization of the fine powder at high liquid flow rates; thus, the mass transfer rate between organic pollutant and particle photocatalyst was enhanced and the efficiency of degradation was increased. As expected, the degradation rate constant increased with increasing sound pressure level, as well as increased with increasing sound frequency ranging from 50 to 100 Hz, then further decreased with increasing sound frequency from 100 to 200 Hz. In addition, Fe doping is also responsible for the enhanced photocurrent response of the Fe-doped TiO2 nanoparticle in FBPR relative to pure TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.