Abstract

Forests provide valuable resources for households in the Philippines, particularly in poor and upland communities. This makes forests an integral part of building resilient communities. This relationship became complex during extreme events such as typhoon occurrence as forests can be a contributor to the intensity and impact of disasters. However, little attention has been paid to forest cover losses due to typhoons during disaster assessments. In this study, forest damage caused by typhoons was measured using harmonic analysis of time series (HANTS) with Landsat-8 Operation Land Imager (OLI) images. The ΔHarmonic Vegetation Index was computed by calculating the difference between HANTS and the actual observed vegetation index value. This was used to identify damaged areas in the forest regions and create a damage map. To validate the reliability of the results, the resulting maps produced using ΔHarmonic VI were compared with the damage mapped from PlanetScope’s high-resolution pre- and post-typhoon images. The method achieved an overall accuracy of 69.20%. The accuracy of the results was comparable to the traditional remote sensing techniques used in forest damage assessment, such as ΔVI and land cover change detection. To further the understanding of the relationship between forest and typhoon occurrence, the presence of time lag in the observations was investigated. Additionally, different contributing factors in forest damage were identified. Most of the forest damage observed was in forest areas with slopes facing the typhoon direction and in vulnerable areas such as near the coast and hill tops. This study will help the government and forest management sectors preserve forests, which will ultimately result in the development of a more resilient community, by making it easier to identify forest areas that are vulnerable to typhoon damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.