Abstract

Litter production and decomposition are key processes controlling the capacity of wetland to store and cycle carbon (C) and nutrients. Typhoons deposit large amounts of green and semi-green (between green and withered) plant tissues and withered litter (normal litter) on wetland soils, generating a pulse of litter production. Climatic models project an increase in typhoon intensity and frequency. Elucidating the impacts of typhoons on C, N and P cycles and storage capacities in subtropical and tropical wetland areas is thus important. We analyzed the patterns and changes of litter decomposition after a typhoon in the Minjiang River estuary in southeastern China. Green litter decomposed the fastest, and the loss of mass did not differ significantly between semi-green litter, withered litter and mixed litter (all soil litter after a typhoon). During the decomposition process the remaining green litter had the highest, and withered litter the lowest N and P concentrations. The biomass loss rate of litter during the studied period was related to the initial litter N and P concentrations. Remaining litter generally increased its N:P ratio during decomposition. The ratio of the released N and P was consequently lower than the initial N:P ratio in all litter types. The typhoon enhanced the release of C, N and P from the litter (884, 12.3 and 6 kg ha−1, respectively) by 264 days after the typhoon. The soil was accordingly enriched with organic matter and nutrients for several months, which should favor microbial growth rates (higher C, N and P availability and lower C:nutrient and N:P ratios) and increase the rates of C and nutrient cycling. If the frequency and/or intensity of typhoons increase, a constant increase in the release of N and P to the soil with lower N:P ratios could change the N and P cycles in wetlands and provide better conditions for the spread of fast-growing species.

Highlights

  • Coastal wetlands occupy 5.7 × 106 km2 globally (Mitsch and Gosselink 2007, Ramsar Convention Secretariat 2013) and 1.2 × 104 km2 in China (Shen and Zhu 1999, Huang et al 2006)

  • The effects of strong tropical storms on the production and decomposition of litter in ecosystems have been studied in several forests, with no consensus on the rates of litter decomposition

  • Studying changes in C, N and P stoichiometry during litter decomposition can advance our understanding of the relationships among litter decomposition rate and the interactions of various nutrients in the plant-litter-soil system (Manzoni et al 2010)

Read more

Summary

January 2016

Remaining litter generally increased its N:P ratio during decomposition. The soil was enriched with organic matter and nutrients for several months, which should favor microbial growth rates (higher C, N and P availability and lower C: nutrient and N:P ratios) and increase the rates of C and nutrient cycling. If the frequency and/or intensity of typhoons increase, a constant increase in the release of N and P to the soil with lower N:P ratios could change the N and P cycles in wetlands and provide better conditions for the spread of fastgrowing species

Introduction
Materials and methods
Findings
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call