Abstract

Abstract. The summertime air pollution events endangering public health in the Guangdong–Hong Kong–Macao Greater Bay Area are connected with typhoons. The wind of the typhoon periphery results in poor diffusion conditions and favorable conditions for transboundary air pollution. Random forest models are established to predict typhoon-associated air quality in the area. The correlation coefficients and the root mean square errors in the air quality index (AQI) and PM2.5, PM10, SO2, NO2 and O3 concentrations are 0.84 (14.88), 0.86 (10.31 µg m−3), 0.84 (17.03 µg m−3), 0.51 (8.13 µg m−3), 0.80 (13.64 µg m−3) and 0.89 (22.43 µg m−3), respectively. Additionally, the prediction models for non-typhoon days are established. According to the feature importance output of the models, the differences in the meteorological drivers of typhoon days and non-typhoon days are revealed. On typhoon days, the air quality is dominated by local source emission and accumulation as the sink of pollutants reduces significantly under stagnant weather, while it is dominated by the transportation and scavenging effect of sea breeze on non-typhoon days. Therefore, our findings suggest that different air pollution control strategies for typhoon days and non-typhoon days should be proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call