Abstract
The five-membered heteroaromatic thiazole molecule contains a number of electron-rich regions that could attract an electrophile, namely the N and S lone pairs that lie in the molecular plane, and π-system areas above the plane. The possibility of each of these sites engaging in a tetrel bond (TB) with CF4 and SiF4, as well as geometries that encompass a CH⋯F H-bond, was explored via DFT calculations. There are a number of minima that occur in the pairing of thiazole with CF4 that are very close in energy, but these complexes are weakly bound by less than 2 kcal mol-1 and the presence of a true TB is questionable. The inclusion of zero-point vibrational energies alters the energetic ordering, which is further modified when entropic effects are added. The preferred geometry would thus be sensitive to the temperature of an experiment. Replacement of CF4 by SiF4 leaves intact most of the configurations, and their tight energetic clustering, the ordering of which is again altered as the temperature rises. But there is one exception in that by far the most tightly bound complex involves a strong Si⋯N TB between SiF4 and the lone pair of the thiazole N, with an interaction energy of 30 kcal mol-1. Even accounting for its high deformation energy and entropic considerations, this structure remains as clearly the most stable at any temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.