Abstract

The Late Permian strata of the Xuanwei Formation in the eastern Yunnan region exhibit extensive diverse morphological features within siderite deposits. These variations in siderite deposits suggest potential differences in their formation processes. In this study, fieldwork and comprehensive indoor studies revealed four distinct forms of siderite deposits: stratiform-laminated, lens-like nodule, sandstone cementation, and fracture filling. The stratiform-laminated siderite, varying in color from bluish-grey to dark grey, is composed of uniformly sized microcrystalline to fine-grained siderite along with detrital matter, displaying precise layering and banding structures that suggest direct deposition from cyclic iron-rich seawater under reducing conditions. Lens-like-nodule siderite, which appears grey-yellow, is composed of mud microcrystalline siderite, medium to coarse-grained pseudo-ooids, and glauconite. It shows conformable distribution characteristics resulting from the diagenetic differentiation of iron-rich sediments under reducing conditions during the diagenetic and early diagenetic periods. Siderite as sandstone cementation exhibits a yellow-brown color and consists of dispersed colloidal siderite and cemented siderite clumps that fill intergranular pores of detrital particles. It precipitated under reducing conditions within those intergranular pores. Siderite filling fractures typically appear as vein-like or network-like structures intersecting bedding at large angles. They exhibit grain structures with significant variations in size. These siderite deposits exhibit exceptional purity and result from siderite dissolution during sedimentary periods, followed by reprecipitation within regional extensional fractures during the diagenetic phase. The primary occurrence of siderite deposits in the study area is within coal-bearing strata, as revealed by the integration of sedimentary profiles and sedimentary facies analysis. The coal-bearing strata, influenced by the Emeishan large igneous province, underwent iron enrichment during and after volcanic eruptions while developing a reducing environment, which was facilitated by abundant vegetation. Consequently, geological processes led to siderite layers, lens-like siderite nodules, and siderite cementation. The Yanshan orogeny induced extensive high-angle fracture development in epigenetic coal-bearing strata, facilitating fluid circulation and the redistribution of soluble siderite. This geological activity resulted in the formation of vein-like structures composed of siderite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.