Abstract
In this paper we develop certain methods of proof in Quine's set theory NF which have no counterparts elsewhere. These ideas were first used by Specker [5] in his disproof of the Axiom of Choice in NF. They depend on the properties of two related operations, T(n) on cardinal numbers and U(α) on ordinal numbers, which are defined by the equationsfor each set x and well ordering R. (Here and below we use Rosser's notation [3].) The definitions insure that the formulas T(x) = y and U(x) = y are stratified when y is assigned a type one higher than x. The importance of T and U stems from the following facts: (i) each of T and U is a 1-1, order preserving operation from its domain onto a proper initial section of its domain; (ii) Tand U commute with most of the standard operations on cardinal and ordinal numbers.These basic facts are discussed in §1. In §2 we prove in NF that the exponential function 2n is not 1-1. Indeed, there exist cardinal numbers m and n which satisfyIn §3 we prove the following technical result, which has many important applications. Suppose f is an increasing function from an initial segment S of the set NO of ordinal numbers into NO and that f commutes with U.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.