Abstract
Topological Lifshitz phase transition characterizes an abrupt change of the topology of the Fermi surface through a continuous deformation of parameters. Recently, Lifshitz transition has been predicted to separate two types of Weyl points: type-I and type-II (or called structured Weyl points), which has attracted considerable attention in various fields. Although recent experimental investigation has seen a rapid progress on type-II Weyl points, it still remains a significant challenge to observe their characteristic Lifshitz transition. Here, we propose a scheme to realize both type-I and type-II Weyl points in three-dimensional ultracold atomic gases by introducing an experimentally feasible configuration based on current spin-orbit coupling technology. In the resultant Hamiltonian, we find three degenerate points: two Weyl points carrying a Chern number $-1$ and a four-fold degenerate point carrying a Chern number $2$. Remarkably, by continuous tuning of a convenient experimental knob, all these degenerate points can transition from type-I to type-II, thereby providing an ideal platform to study different types of Weyl points and directly probe their Lifshitz phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.