Abstract

Centrosymmetric materials with spin-degenerate bands are generally considered to be trivial for spintronics and related physics. In two-dimensional (2D) materials with multiple degenerate orbitals, we find that the spin-orbit coupling can induce spin-orbital locking, generate out-of-plane Zeeman-like fields displaying opposite signs for opposing orbitals, and create novel electronic states insensitive to the in-plane magnetic field, which thus enables a new type of Ising superconductivity applicable to centrosymmetric materials. Many candidate materials are identified by high-throughput first-principles calculations. Our work enriches the physics and materials of Ising superconductivity, opening new opportunities for future research of 2D materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call