Abstract
Hydrogen evolution through ecofriendly photoelectrochemical (PEC) water splitting is considered to be one of the most cost-effective and desirable methods for meeting ever-growing energy demands. However, the low photoconversion efficiency limits the practical applicability of PEC water splitting. To develop an efficient photoelectrode, here the morphology of ZnO is tuned from 0D to 3D. It is observed that vertically grown 2D nanosheets outperform other morphologies in PEC water splitting by generating nearly 0.414 mA cm-2 at 0 V vs Ag/AgCl. Furthermore, these perpendicularly developed 2D nanosheets of ZnO are sensitized by metal-free carbon (C) dots to improve the photoconversion efficiency of ZnO. The prepared ZnO/C dots work as an effective photoanode, which can produce a 0.831 mA cm-2 photocurrent density upon application of 0 V vs Ag/AgCl under constant illumination, which is 2 times higher than that of bare ZnO. The enhanced PEC performance of ZnO/C dots is confirmed by the photoconversion efficiency (η). The ZnO/C dots exhibit a 2-fold-higher photoconversion efficiency (η) compared to that of ZnO. Additionally, the enhancement in PEC activity of ZnO/C dots is attributed to the higher carrier concentrations in the heterostructure. Bare ZnO has a 1.77 × 1020 cm-3 carrier density, which becomes 3.70 × 1020 cm-3 after sensitization with C dots. Enhanced carrier density successively leads to higher PEC water splitting efficiency. Band alignments of ZnO and C dots indicate the creation of the type-II heterostructure, which facilitates successful charge transportation among C dots and ZnO, producing a charge-carrier separation. Two-dimensional sheets of ZnO and ZnO/C dots exhibit appreciable stability under continuous illumination for 1 and 2 h, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.