Abstract

BackgroundLytic polysaccharide monooxygenase (LPMO) is a group of recently identified proteins that catalyze oxidative cleavage of the glycosidic linkages of cellulose and other polysaccharides. By utilizing the oxidative mode of action, LPMOs are able to enhance the efficiency of cellulase in the hydrolysis of cellulose. Particularly, auxiliary activity family 9 (AA9) is a group of fungal LPMOs that show a type-dependent regioselectivity on cellulose in which Types 1, 2, and 3 hydroxylate at C1, C4, and C1 and C4 positions, respectively. In this study, we investigated comparative characteristics of TtAA9E from Thielavia terrestris belonging to Type 1 and TaAA9A from Thermoascus aurantiacus belonging to Type 3 on cellulose and pretreated lignocellulose.ResultsFrom product analysis, TtAA9E dominantly generated oligosaccharides with an aldonic acid form, which is an evidence of C1 oxidation, while TaAA9A generated oligosaccharides with both aldonic acid and 4-ketoaldose forms, which is evidence of C1 and C4 oxidations, respectively. For hydrolysis of cellulose (Avicel) by cellulase, higher synergism was observed for TtAA9E than for TaAA9A. For hydrolysis of pretreated lignocellulose using rice straw, synergistic behaviors of TtAA9E and TaAA9A were different depending on the pretreatment of rice straw. Specifically, on acid-pretreated rice straw, TtAA9E showed a higher synergism than TaAA9A while on alkali-pretreated rice straw, TaAA9A showed a higher synergism than TtAA9E.ConclusionsWe show type-dependent action modes of TtAA9E and TaAA9A for cellulose oxidation together with substrate-dependent synergistic hydrolysis of cellulosic substrates. The results obtained from this study indicate the different behaviors of AA9s on cellulose and pretreated lignocellulose, suggesting a selection of AA9 proteins specific to substrates is required for industrial utilization.

Highlights

  • Lytic polysaccharide monooxygenase (LPMO) is a group of recently identified proteins that catalyze oxidative cleavage of the glycosidic linkages of cellulose and other polysaccharides

  • Oxidative cleavage of cellulose by TtAA9E and TaAA9A To investigate the direct enzymatic activities of TtAA9E and TaAA9A towards cellulose, the reaction products from pure cellulose were analyzed by MALDI-TOF/TOF matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MS) (Fig. 1)

  • The two activity family 9 (AA9) produce distinctively different product profiles (Fig. 1). These results indicate that both AA9s have the endo-type oxidative cleavage mode but at the same time different oxidative regioselectivities toward β-glycosidic linkages on cellulose

Read more

Summary

Introduction

Lytic polysaccharide monooxygenase (LPMO) is a group of recently identified proteins that catalyze oxidative cleavage of the glycosidic linkages of cellulose and other polysaccharides. Cellulose cleavage by LPMOs is known to involve the reduction of Cu2+ at the active site and the abstraction of H and hydroxylation [5, 6, 8] Due to their oxidative mode of action, LPMOs require external electron donors such as ascorbic acid, reduced glutathione, gallate, or sodium azide for their activity [6, 7, 9]. In addition to these synthetic reducing agents, lignin, which naturally exists in lignocellulose, or enzymes such as cellobiose dehydrogenase (CDH) and glucose-methanol-choline oxidase/dehydrogenase (GMC) family of oxidoreductase can act as reducing agents for LPMOs [8, 10,11,12,13]. This surface oxidation by LPMOs may induce structural modification of the recalcitrant cellulose, making it more amendable to subsequent hydrolysis by cellulase through the creation of additional chain ends [14, 15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call